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Abstract
We propose a Feynman path-integral solution for classical harmonic oscillator
motions with stochastic frequency.

PACS numbers: 0365G, 0250, 0510G, 0530

Introduction

The problem of the (random) motion of a harmonic oscillator in the presence of a
stochastic time-dependent perturbation on its frequency is of great theoretical and pratical
importance [1, 2]. In this Letter we propose a formal path-integral solution for the above-
mentioned problem by closely following our previous studies [3, 4]. In section 1 we write
a Feynman path-integral representation for the external forcing problem. In section 2 we
consider a similar problem for the initial-condition case.

1. The Green function for external forcing

Let us start our analysis by considering the classical motion equation of a harmonic oscillator
subject to an external forcing{

d2

dt2
+ w2

0(1 + g(t))

}
x(t) = F(t). (1)

Herew2
0(1+g(t)) is the time-dependent frequency with stochastic part given by the random

function g(t) obeying the Gaussian statistics

〈g(t)g(t ′)〉 = K(t, t ′). (2)

The solution of equation (1) is, thus, given by

x(t, [g]) =
∫ t

0
G(t, t ′, [g])F (t ′) dt ′ (3)

whereG(t, t ′, [g]) denotes the Green problem functionally depending on the random frequency
g(t) and the notation emphasizes that the objects under study are functionals of the random
part g(t) of the harmonic oscillator frequency.
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In order to write a path-integral representation for the Green function equation (3) we
follow our previous study [3] by using a ‘proper-time’ technique by introducing related
Schrödinger wave equations with an initial point source and −∞ � t � +∞:

i
∂Ḡ(s; (t, t ′))

∂s
= −

[
d2

dt2
+ w2

0(1 + g(t))

]
Ḡ(s; (t, t ′)) (4)

lim
s→0

Ḡ(s; (t, t ′)) = δ(t − t ′) (5)

lim
s→∞ Ḡ(s; (t, t

′)) = 0. (6)

At this point we note the following identity between the Schrödinger equations (4)–(6)
and the searched harmonic oscillator Green function:

G[(t, t ′, [g]) = −i
∫ ∞

0
ds Ḡ(s; (t, t ′)). (7)

Let us, thus, write a path integral for the associated Schrödinger equations (4)–(7) by
considering Ḡ(s; (t, t ′)) in the operator form (the Feynman–Dirac propagator):

Ḡ(s; (t, t ′)) = 〈t | exp(isH)|t ′〉 (8)

where H is the differential operator

H = −
{

d2

dt2
+ w2

0(1 + g(t))

}
. (9)

As in quantum mechanics we write equation (8) as an infinite product of short-time s
propagations

〈t | exp(isH)|t ′〉 = lim
N→∞

N∏
i=1

∫ +∞

−∞
dti〈ti | exp i

( s
N
H
)

|ti−1〉. (10)

The standard short-time expansion in the s-parameter for equation (10) is given by

lim
s→0+

〈ti |eisH |ti−1〉 = lim
s→0+

∫
dwi exp{is[w2

i + w2
0(1 + g2(ti−1))]} exp[iwi(ti − ti−1)]. (11)

If we substitute equation (11) into (10) and take the Feynman limit of N → ∞, we will
obtain the following path-integral representation after evaluating the wi-Gaussian integrals of
the representation equation (8):

Ḡ(s; (t, t ′)) =
∫ ( ∏

0<σ<s
t(0)=t ′ ;t (s)=t

dt (σ )

)
exp

{
i

2

∫ 2

0
dσ

[(
dt (σ )

dσ

)2]}

× exp

{
i
∫ s

0
[w2

0(1 + g(t (σ )))] dσ

}
. (12)

The averaged out equation (7) is thus given straightforwardly by the following Feynman
polaron-like path integral:

〈G(t, t ′, [g])〉g = −i
∫ ∞

0
ds (eiw2

0s)

∫
t (0)=t ′;t (s)=t

DF[t (σ )] exp

{
i

2

∫ s

0
dσ

[(
dt

dσ

)2]}

× exp

{
− w4

0

∫ s

0
dσ
∫ s

0
dσ ′K(t(σ ); t (σ ′))

}
. (13)



Letter to the Editor L133

The two-point correlation function is still given by a two-full similar path integral, namely

〈G(t1, t ′1, [g])G(t2, t
′
2, [g])〉g =

∫ ∞

0
ds1 ds2 eiw2

0(s1+s2)

×
∫
t1(0)=t ′1;t2(s1)=t1;t2(0)=t ′2;t2(s2)=t2

DF[t1(σ ), t2(σ )]

× exp

{
i

2

(∫ s1

0
dσ (ṫ1(σ ))

2 +
∫ s2

0
dσ (ṫ2(σ ))

2

)}

× exp

{
− w4

0

[ ∫ s1

0
dσ
∫ s1

0
dσ ′K(t1(σ ), t1(σ ′)) +

∫ s1

0
dσ
∫ s2

0
dσ ′

×(K(t1(σ ), t2(σ ′)) +K(t2(σ ), t1(σ
′))) +

∫ s1

0
dσ
∫ s2

0
dσ ′K(t2(σ ), t2(σ ′))

]}
.

(14)

Similar N -iterated path-integral expressions hold true for the N -point correlation
function 〈x(t1, [g]) · · · x(tN , [g])〉g . Explicit and approximate evaluations of the path-integral
equations (13) and (14) follow procedures similar to those used in the usual contexts of physics
statistics, quantum mechanics and random wave propagation (last reference of [1]).

Let us show such exact integral representation for equation (13) in the case of the practical
case of a slowly varying (even function) kernel of the form

K(t) ∼ K(0)− �0

2
|t |2 |t | �

(
+
K(0)

�0

)1/2

= L

K(t) ∼ 0 |t | � L.

(15)

In this case, we have the following exact result for the path integral in equation (13):

〈G(t, t ′, [g])〉g =
∫ ∞

0
ds e−s(−iw2

0)e−(w4
0K(0))s

2

{
(2π is)

1
2

[
w2

0(− �0
2 )

1
2 S

3
2

sen[s
3
2w2

0(− �0
2 )

1
2 ]

]

× exp

([
iw2

0

2
s

1
2

(
−�0

2

)1
2

cot

(
w2

0

(
−�0

2

)1
2

s
3
2

)]
(t − t ′)2

)}
. (16)

Another useful formula is that related to the ‘mean-field’ averaged path integral when the
kernel K(t, t ′) has a Fourier transform of the general form

K(t, t ′) = 1√
2π

∫ +∞

−∞
dp · eip(t−t ′)K̃(p). (17)

The envisaged integral representation for equation (13) is, thus, given by

〈G(t, t ′, [g])〉g = −i
∫ ∞

0
ds eisw2

0 exp

{
− w4

0√
2π

∫ +∞

−∞
K̃(ρ)×M(p, s, t, t ′)

}
(18)

where

M(p, s, t, k′) =
∫ s

0
dσ
∫ s

0
dσ ′

{∫
t (0)=t ′
t (s)=t

DF[t (σ )] exp

{
i

2

∫ s

0

[(
dt

dσ

)]2}

× exp[ip(t (σ )− t (σ ′))]
}
. (19)
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2. The homogeneous problem

Let us start this section by considering now the problem of determining two linearly independent
solutions of the homogeneous harmonic oscilator problem{

d2

dt2
+ w2

0(1 + g(t))

}
x(t) = 0 (20)

with the initial conditions

x(0) = x0 x ′(0) = v0. (21)

It is straightforward to see that two linearly independent solutions are given by the
following expressions:

x1(t, [g]) = exp

{∫ t

0
y2(σ, [g]) dσ

}
(22)

x2(t, [g]) = x1(t, [g])
∫ t

0
(x1(σ, [g]))−2 dσ (23)

where y(t, [g]) satisfy the first-order nonlinear ordinary differential equation

dy

dt
(t) + (y(t)2 = −w2

0(1 + g(t)). (24)

In order to obtain a path-integral representation for equation (24) we remark that the whole
averaging (stochastic) information is contained in the characteristic functional

Z[j (t)] =
〈

exp

{
i
∫ ∞

0
dt y(t, [g])j (t)

}〉
g

. (25)

In order to write a path-integral representation for the characteristic functional
equation (25) we rewrite (25) as a Gaussian functional integral in g(t):

Z[j (t)] =
∫
DF[g(t)] exp

(
− 1

2

∫ ∞

0
dt dt ′g(t)K−1(t, t ′)g(t ′)

)
exp

{
i
∫ ∞

0
dt y(t, [g])

}
.

(26)

At this point we observe the validity of the following functional integral representation for
the characteristic functional equation (26) after considering the functional change g(t) → y(t)

defined by equation (24), namely

Z[j (t)] =
∫
DF[y(t)] × exp

(
− 1

2(w0)4

∫ ∞

0
dt dt ′

[(
dy

dt
+ y2

)
(t) + w2

0

])
K(t, t ′)

×
[(

dy

dt ′
+ y2

)
(t ′) + w2

0

]
exp

{
i
∫ ∞

0
dt j (t)y(t)

}
(27)

where we have used the fact that the Jacobian associated with the functional changeg(t) → y(t)

is unity:

detF

[
d

dt
+ 2y

]
= δg(t)

δy(t)
= 1. (28)

At this point it is instructive to remark that in the important case of a white-noise frequency
process with strength γ

K(t, t ′) = γ δ(t − t) (29)
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the path-integral representation for the characteristic functional equation (27) takes the more
amenable form

Z[j (t)] =
∫
DF[y(t)] exp

{
− γ

2(w0)4

∫ ∞

0
dt

[
dy

dt
+ y2(t) + w2

0

]2}

× exp

{
i
∫ ∞

0
dt y(t)j (t)

}
; (30)

we obtain, thus, the standard λϕ4 zero-dimensional path integral as a functional integral
representation for the characteristic function equation (25) in the white-noise case

Z[j (t)] =
∫
DF[ȳ(t)] exp

{
− γ

2(w0)4

∫ ∞

0
dt

[(
dȳ

dt

)2

+ 2w2
0 ȳ

2 + ȳ4

]
(t)

}

× exp

{
i
∫ ∞

0
dt ȳ(t)j (t)

}
. (31)

Luiz C L Botelho is grateful to CNPq–Brazil for financial support.

Appendix A

In this appendix we discuss some mathematical points related to the final condition on
the quantum propagator equations (4)–(6) (its vanishing in the limit s → ∞). Let us
first remark that by imposing the trace class condition on the correlation equation (2)
k(t, t ′) (

∫∞
0 k(t, t) dt < ∞) one has the result that all realizations (sampling) g(t) of the

associated stochastic process are square integrable functions by a direct application of the
Minlos theorem on the domain of functional integrals [5]. At this point, we note that if one
restricts g(t) further to be a d2

dt2 -perturbation, namely with w2
0 ∈ L∞ and g(t) ∈ L2(0,∞)

‖(w2
0(1 + g(t))h‖L2 � a

∥∥∥∥ d2

dt2
h

∥∥∥∥
L2

+ b‖h‖L2 (A.1)

and 0 < a < 1 and b arbitrary, one can apply the Kato–Rellich theorem [6] to be sure that the
domain of the differential operator − d2

dt2 + w2
0 + w2

0g(t) is (at least) contained on the domain

of − d2

dt2 which in turn has a purely continuous spectrum on L2(R). As a consequence of the
above exposed remarks one does not have bound states on the Schrödinger operator spectrum of
equation (4) for each realization of g(t) on the above-cited functional class. As a consequence,
we have that the evolution operator

exp

(
is

[
− d2

dt2
+ w2

0(1 + g(t))

])
(A.2)

is a unitary operator on Dom(− d2

dt2 ) and G(s, (t, t ′)) in turn is expected to have the same

behaviour of exp(is[− d2

dt2 ]) (asymptotic completeness [7]) at s → ∞, which in turn vanishes at
s → ∞, making our condition equation (6) highly reasonable from a mathematical physicist’s
point of view.

At this point we remark that the different problem of determining the quantum propagator
of a particle under the influence of a harmonic potential V (x) = 1

2 w
2
0x

2 and a stochastic
potential g(x) may be possible to handle in our framework. Note that the ‘unperturbed’
Hamiltonian − h̄2d2

2m dx2 + 1
2mw

2
0x

2 has a pure point spectrum (bound states) and its perturbation
by a g(x) ∈ L2(R) potential does not alter the spectrum behaviour. However, one can proceed
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in a mathematical physicist’s (formal) way as exposed in our Letter and see that equation (3)
adapted to this case is still (formally) correct. Namely

〈G(t, (x, x ′))〉g =
∫ ( ∏

0<σ<t
x(0)=x′ ;x(t)=x

dx (σ )

)
exp

{
i

2
m

∫ t

0
dσ

[(
dx(σ )

dσ

)2]}

× exp

{
i

2
mw2

0

∫ t

0
dσ [x(σ )]2

}
exp

{
− w4

0

∫ t

0
dσ
∫ t

0
dσ ′K(x(σ); x(σ ))

}
.

(A.3)

Finally we want to point out that in the general case where k(t, t ′) is not defined on an
operator of the trace class, the realizations g(t)will be distributional objects. Unfortunately in
this case there is no rigorous spectral perturbation mathematics for differential operators acting
on nuclear spaces (S ′(R),D′(R)) etc, which is the natural mathematical setting to understand
equation (1) of this Letter.

Appendix B

In this appendix we complete our study by considering the problem of a harmonic oscillator
in the presence of a damping term (0 < t < ∞){

d2

dt2
+ ν

d

dt
+ w2

0(1 + g(t))

}
x(t) = F(t). (B.1)

In order to map the above-written differential equation in the analysis presented in section 1
of this Letter, we implement in equation (B.1) the following time-variable change [3]:

ζ = m

ν
(1 − e−( ν

m
)t )

y(ζ ) = x(t).
(B.2)

We obtain, thus, the following pure harmonic oscillator differential equation without the
damping term in place of the original equation (B.1), namely{

d2

dζ 2
+ w2

0[1 + g̃(ζ )]

}
y(ζ ) = F̃ (ζ ). (B.3)

Here

g̃(ζ ) = g
(
−
(m
ν

)
lg
(

1 −
( ν
m

)
ζ
))

(B.4)

F̃ (ζ ) = F
(−(m

ν
) lg(1 − ( ν

m
)ζ ))

(1 − ( ν
m
)ζ )2

(B.5)

and the correlator stochastic frequency

K(ζ, ζ ′) = K((ζ, ζ ′)) = K

(
m

ν

∣∣∣∣lg
[
(1 − ( ν

m
)ζ )

(1 − ( ν
m
)ζ ′)

]∣∣∣∣
)
. (B.6)

From here on the analysis goes as in the bulk of this Letter under the condition that the
range associated with this new time variable is the finite interval [0, m

ν
].
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