Feynman path-integral representations for the classical harmonic oscillator with stochastic frequency

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2001 J. Phys. A: Math. Gen. 34 L131
(http://iopscience.iop.org/0305-4470/34/12/101)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.124
The article was downloaded on 02/06/2010 at 08:51

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Feynman path-integral representations for the classical harmonic oscillator with stochastic frequency

Luiz C L Botelho
Departamento de Física, Universidade Federal Rural do Rio de Janeiro, 23851-180 Itaguaí, Rio de Janeiro, RJ, Brazil

Received 4 October 2000, in final form 8 January 2001

Abstract

We propose a Feynman path-integral solution for classical harmonic oscillator motions with stochastic frequency.

PACS numbers: 0365G, 0250, 0510G, 0530

Introduction

The problem of the (random) motion of a harmonic oscillator in the presence of a stochastic time-dependent perturbation on its frequency is of great theoretical and pratical importance [1,2]. In this Letter we propose a formal path-integral solution for the abovementioned problem by closely following our previous studies [3, 4]. In section 1 we write a Feynman path-integral representation for the external forcing problem. In section 2 we consider a similar problem for the initial-condition case.

1. The Green function for external forcing

Let us start our analysis by considering the classical motion equation of a harmonic oscillator subject to an external forcing

$$
\begin{equation*}
\left\{\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}+w_{0}^{2}(1+g(t))\right\} x(t)=F(t) \tag{1}
\end{equation*}
$$

Here $w_{0}^{2}(1+g(t))$ is the time-dependent frequency with stochastic part given by the random function $g(t)$ obeying the Gaussian statistics

$$
\begin{equation*}
\left\langle g(t) g\left(t^{\prime}\right)\right\rangle=K\left(t, t^{\prime}\right) \tag{2}
\end{equation*}
$$

The solution of equation (1) is, thus, given by

$$
\begin{equation*}
x(t,[g])=\int_{0}^{t} G\left(t, t^{\prime},[g]\right) F\left(t^{\prime}\right) \mathrm{d} t^{\prime} \tag{3}
\end{equation*}
$$

where $G\left(t, t^{\prime},[g]\right)$ denotes the Green problem functionally depending on the random frequency $g(t)$ and the notation emphasizes that the objects under study are functionals of the random part $g(t)$ of the harmonic oscillator frequency.

In order to write a path-integral representation for the Green function equation (3) we follow our previous study [3] by using a 'proper-time' technique by introducing related Schrödinger wave equations with an initial point source and $-\infty \leqslant t \leqslant+\infty$:

$$
\begin{align*}
& \mathrm{i} \frac{\partial \bar{G}\left(s ;\left(t, t^{\prime}\right)\right)}{\partial s}=-\left[\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}+w_{0}^{2}(1+g(t))\right] \bar{G}\left(s ;\left(t, t^{\prime}\right)\right) \tag{4}\\
& \lim _{s \rightarrow 0} \bar{G}\left(s ;\left(t, t^{\prime}\right)\right)=\delta\left(t-t^{\prime}\right) \tag{5}\\
& \lim _{s \rightarrow \infty} \bar{G}\left(s ;\left(t, t^{\prime}\right)\right)=0 \tag{6}
\end{align*}
$$

At this point we note the following identity between the Schrödinger equations (4)-(6) and the searched harmonic oscillator Green function:

$$
\begin{equation*}
G\left[\left(t, t^{\prime},[g]\right)=-\mathrm{i} \int_{0}^{\infty} \mathrm{d} s \bar{G}\left(s ;\left(t, t^{\prime}\right)\right)\right. \tag{7}
\end{equation*}
$$

Let us, thus, write a path integral for the associated Schrödinger equations (4)-(7) by considering $\bar{G}\left(s ;\left(t, t^{\prime}\right)\right)$ in the operator form (the Feynman-Dirac propagator):

$$
\begin{equation*}
\bar{G}\left(s ;\left(t, t^{\prime}\right)\right)=\langle t| \exp (\mathrm{i} s H)\left|t^{\prime}\right\rangle \tag{8}
\end{equation*}
$$

where H is the differential operator

$$
\begin{equation*}
H=-\left\{\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}+w_{0}^{2}(1+g(t))\right\} \tag{9}
\end{equation*}
$$

As in quantum mechanics we write equation (8) as an infinite product of short-time s propagations

$$
\begin{equation*}
\langle t| \exp (\mathrm{i} s H)\left|t^{\prime}\right\rangle=\lim _{N \rightarrow \infty} \prod_{i=1}^{N} \int_{-\infty}^{+\infty} \mathrm{d} t_{i}\left\langle t_{i}\right| \operatorname{expi}\left(\frac{s}{N} H\right)\left|t_{i-1}\right\rangle \tag{10}
\end{equation*}
$$

The standard short-time expansion in the s-parameter for equation (10) is given by
$\lim _{s \rightarrow 0^{+}}\left\langle t_{i}\right| \mathrm{e}^{\mathrm{i} s H}\left|t_{i-1}\right\rangle=\lim _{s \rightarrow 0^{+}} \int \mathrm{d} w_{i} \exp \left\{\mathrm{is}\left[w_{i}^{2}+w_{0}^{2}\left(1+g^{2}\left(t_{i-1}\right)\right)\right]\right\} \exp \left[\mathrm{i} w_{i}\left(t_{i}-t_{i-1}\right)\right]$.
If we substitute equation (11) into (10) and take the Feynman limit of $N \rightarrow \infty$, we will obtain the following path-integral representation after evaluating the w_{i}-Gaussian integrals of the representation equation (8):

$$
\begin{align*}
\bar{G}\left(s ;\left(t, t^{\prime}\right)\right)= & \int\left(\prod_{\substack{0, \sigma<s<\\
t(0)=t^{\prime}, t(s)=t}} \mathrm{~d} t(\sigma)\right) \exp \left\{\frac{\mathrm{i}}{2} \int_{0}^{2} \mathrm{~d} \sigma\left[\left(\frac{\mathrm{~d} t(\sigma)}{\mathrm{d} \sigma}\right)^{2}\right]\right\} \\
& \times \exp \left\{\mathrm{i} \int_{0}^{s}\left[w_{0}^{2}(1+g(t(\sigma)))\right] \mathrm{d} \sigma\right\} . \tag{12}
\end{align*}
$$

The averaged out equation (7) is thus given straightforwardly by the following Feynman polaron-like path integral:

$$
\begin{align*}
\left\langle G\left(t, t^{\prime},[g]\right)\right\rangle_{g} & =-\mathrm{i} \int_{0}^{\infty} \mathrm{d} s\left(\mathrm{e}^{\mathrm{i} w_{0}^{2} s}\right) \int_{t(0)=t^{\prime} ; t(s)=t} D^{\mathrm{F}}[t(\sigma)] \exp \left\{\frac{\mathrm{i}}{2} \int_{0}^{s} \mathrm{~d} \sigma\left[\left(\frac{\mathrm{~d} t}{\mathrm{~d} \sigma}\right)^{2}\right]\right\} \\
& \times \exp \left\{-w_{0}^{4} \int_{0}^{s} \mathrm{~d} \sigma \int_{0}^{s} \mathrm{~d} \sigma^{\prime} K\left(t(\sigma) ; t\left(\sigma^{\prime}\right)\right)\right\} . \tag{13}
\end{align*}
$$

The two-point correlation function is still given by a two-full similar path integral, namely

$$
\begin{align*}
\left\langle G\left(t_{1}, t_{1}^{\prime},[g]\right)\right. & \left.G\left(t_{2}, t_{2}^{\prime},[g]\right)\right\rangle_{g}=\int_{0}^{\infty} \mathrm{d} s_{1} \mathrm{~d} s_{2} \mathrm{e}^{\mathrm{i} w_{0}^{2}\left(s_{1}+s_{2}\right)} \\
& \times \int_{t_{1}(0)=t_{1}^{\prime} ; t_{2}\left(s_{1}\right)=t_{1} ; t_{2}(0)=t_{2}^{\prime}, t_{2}\left(s_{2}\right)=t_{2}} D^{\mathrm{F}}\left[t_{1}(\sigma), t_{2}(\sigma)\right] \\
& \times \exp \left\{\frac{\mathrm{i}}{2}\left(\int_{0}^{s_{1}} \mathrm{~d} \sigma\left(\dot{t}_{1}(\sigma)\right)^{2}+\int_{0}^{s_{2}} \mathrm{~d} \sigma\left(t_{2}(\sigma)\right)^{2}\right)\right\} \\
& \times \exp \left\{-w_{0}^{4}\left[\int_{0}^{s_{1}} \mathrm{~d} \sigma \int_{0}^{s_{1}} \mathrm{~d} \sigma^{\prime} K\left(t_{1}(\sigma), t_{1}\left(\sigma^{\prime}\right)\right)+\int_{0}^{s_{1}} \mathrm{~d} \sigma \int_{0}^{s_{2}} \mathrm{~d} \sigma^{\prime}\right.\right. \\
& \left.\left.\times\left(K\left(t_{1}(\sigma), t_{2}\left(\sigma^{\prime}\right)\right)+K\left(t_{2}(\sigma), t_{1}\left(\sigma^{\prime}\right)\right)\right)+\int_{0}^{s_{1}} \mathrm{~d} \sigma \int_{0}^{s_{2}} \mathrm{~d} \sigma^{\prime} K\left(t_{2}(\sigma), t_{2}\left(\sigma^{\prime}\right)\right)\right]\right\} \tag{14}
\end{align*}
$$

Similar N-iterated path-integral expressions hold true for the N-point correlation function $\left\langle x\left(t_{1},[g]\right) \cdots x\left(t_{N},[g]\right)\right\rangle_{g}$. Explicit and approximate evaluations of the path-integral equations (13) and (14) follow procedures similar to those used in the usual contexts of physics statistics, quantum mechanics and random wave propagation (last reference of [1]).

Let us show such exact integral representation for equation (13) in the case of the practical case of a slowly varying (even function) kernel of the form

$$
\begin{align*}
& K(t) \sim K(0)-\frac{\ell_{0}}{2}|t|^{2} \quad|t| \ll\left(+\frac{K(0)}{\ell_{0}}\right)^{1 / 2}=L \tag{15}\\
& K(t) \sim 0 \quad|t| \gg L .
\end{align*}
$$

In this case, we have the following exact result for the path integral in equation (13):

$$
\begin{align*}
\left\langle G\left(t, t^{\prime},[g]\right)\right\rangle_{g} & =\int_{0}^{\infty} \mathrm{d} s \mathrm{e}^{-s\left(-\mathrm{i} w_{0}^{2}\right)} \mathrm{e}^{-\left(w_{0}^{4} K(0)\right) s^{2}}\left\{(2 \pi \mathrm{i} s)^{\frac{1}{2}}\left[\frac{w_{0}^{2}\left(-\frac{\ell_{0}}{2}\right)^{\frac{1}{2}} S^{\frac{3}{2}}}{\operatorname{sen}\left[s^{\frac{3}{2}} w_{0}^{2}\left(-\frac{\ell_{0}}{2}\right)^{\frac{1}{2}}\right]}\right]\right. \\
& \left.\times \exp \left(\left[\frac{\mathrm{i} w_{0}^{2}}{2} s^{\frac{1}{2}}\left(-\frac{\ell_{0}}{2}\right)^{\frac{1}{2}} \cot \left(w_{0}^{2}\left(-\frac{\ell_{0}}{2}\right)^{\frac{1}{2}} s^{\frac{3}{2}}\right)\right]\left(t-t^{\prime}\right)^{2}\right)\right\} \tag{16}
\end{align*}
$$

Another useful formula is that related to the 'mean-field' averaged path integral when the kernel $K\left(t, t^{\prime}\right)$ has a Fourier transform of the general form

$$
\begin{equation*}
K\left(t, t^{\prime}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \mathrm{d} p \cdot \mathrm{e}^{\mathrm{i} p\left(t-t^{\prime}\right)} \tilde{K}(p) \tag{17}
\end{equation*}
$$

The envisaged integral representation for equation (13) is, thus, given by

$$
\begin{equation*}
\left\langle G\left(t, t^{\prime},[g]\right)\right\rangle_{g}=-\mathrm{i} \int_{0}^{\infty} \mathrm{d} s \mathrm{e}^{\mathrm{i} s w_{0}^{2}} \exp \left\{-\frac{w_{0}^{4}}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \tilde{K}(\rho) \times M\left(p, s, t, t^{\prime}\right)\right\} \tag{18}
\end{equation*}
$$

where

$$
\begin{align*}
M\left(p, s, t, k^{\prime}\right)= & \int_{0}^{s} \mathrm{~d} \sigma \int_{0}^{s} \mathrm{~d} \sigma^{\prime}\left\{\int_{\substack{t(0)=I^{\prime} \\
t(s) t}} D^{\mathrm{F}}[t(\sigma)] \exp \left\{\frac{\mathrm{i}}{2} \int_{0}^{s}\left[\left(\frac{\mathrm{~d} t}{\mathrm{~d} \sigma}\right)\right]^{2}\right\}\right. \\
& \left.\times \exp \left[\mathrm{i} p\left(t(\sigma)-t\left(\sigma^{\prime}\right)\right)\right]\right\} . \tag{19}
\end{align*}
$$

2. The homogeneous problem

Let us start this section by considering now the problem of determining two linearly independent solutions of the homogeneous harmonic oscilator problem

$$
\begin{equation*}
\left\{\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}+w_{0}^{2}(1+g(t))\right\} x(t)=0 \tag{20}
\end{equation*}
$$

with the initial conditions

$$
\begin{equation*}
x(0)=x_{0} \quad x^{\prime}(0)=v_{0} \tag{21}
\end{equation*}
$$

It is straightforward to see that two linearly independent solutions are given by the following expressions:

$$
\begin{align*}
& x_{1}(t,[g])=\exp \left\{\int_{0}^{t} y^{2}(\sigma,[g]) \mathrm{d} \sigma\right\} \tag{22}\\
& x_{2}(t,[g])=x_{1}(t,[g]) \int_{0}^{t}\left(x_{1}(\sigma,[g])\right)^{-2} \mathrm{~d} \sigma \tag{23}
\end{align*}
$$

where $y(t,[g])$ satisfy the first-order nonlinear ordinary differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} t}(t)+\left(y(t)^{2}=-w_{0}^{2}(1+g(t))\right. \tag{24}
\end{equation*}
$$

In order to obtain a path-integral representation for equation (24) we remark that the whole averaging (stochastic) information is contained in the characteristic functional

$$
\begin{equation*}
Z[j(t)]=\left\langle\exp \left\{\mathrm{i} \int_{0}^{\infty} \mathrm{d} t y(t,[g]) j(t)\right\}\right\rangle_{g} \tag{25}
\end{equation*}
$$

In order to write a path-integral representation for the characteristic functional equation (25) we rewrite (25) as a Gaussian functional integral in $g(t)$:

$$
\begin{equation*}
Z[j(t)]=\int D^{\mathrm{F}}[g(t)] \exp \left(-\frac{1}{2} \int_{0}^{\infty} \mathrm{d} t \mathrm{~d} t^{\prime} g(t) K^{-1}\left(t, t^{\prime}\right) g\left(t^{\prime}\right)\right) \exp \left\{\mathrm{i} \int_{0}^{\infty} \mathrm{d} t y(t,[g])\right\} \tag{26}
\end{equation*}
$$

At this point we observe the validity of the following functional integral representation for the characteristic functional equation (26) after considering the functional change $g(t) \rightarrow y(t)$ defined by equation (24), namely

$$
\begin{align*}
Z[j(t)]=\int & D^{\mathrm{F}}[y(t)] \times \exp \left(-\frac{1}{2\left(w_{0}\right)^{4}} \int_{0}^{\infty} \mathrm{d} t \mathrm{~d} t^{\prime}\left[\left(\frac{\mathrm{d} y}{\mathrm{~d} t}+y^{2}\right)(t)+w_{0}^{2}\right]\right) K\left(t, t^{\prime}\right) \\
& \times\left[\left(\frac{\mathrm{d} y}{\mathrm{~d} t^{\prime}}+y^{2}\right)\left(t^{\prime}\right)+w_{0}^{2}\right] \exp \left\{\mathrm{i} \int_{0}^{\infty} \mathrm{d} t j(t) y(t)\right\} \tag{27}
\end{align*}
$$

where we have used the fact that the Jacobian associated with the functional change $g(t) \rightarrow y(t)$ is unity:

$$
\begin{equation*}
\operatorname{det}_{\mathrm{F}}\left[\frac{\mathrm{~d}}{\mathrm{~d} t}+2 y\right]=\frac{\delta g(t)}{\delta y(t)}=1 \tag{28}
\end{equation*}
$$

At this point it is instructive to remark that in the important case of a white-noise frequency process with strength γ

$$
\begin{equation*}
K\left(t, t^{\prime}\right)=\gamma \delta(t-t) \tag{29}
\end{equation*}
$$

the path-integral representation for the characteristic functional equation (27) takes the more amenable form

$$
\begin{align*}
Z[j(t)]=\int & D^{\mathrm{F}}[y(t)] \exp \left\{-\frac{\gamma}{2\left(w_{0}\right)^{4}} \int_{0}^{\infty} \mathrm{d} t\left[\frac{\mathrm{~d} y}{\mathrm{~d} t}+y^{2}(t)+w_{0}^{2}\right]^{2}\right\} \\
& \times \exp \left\{\mathrm{i} \int_{0}^{\infty} \mathrm{d} t y(t) j(t)\right\} \tag{30}
\end{align*}
$$

we obtain, thus, the standard $\lambda \varphi^{4}$ zero-dimensional path integral as a functional integral representation for the characteristic function equation (25) in the white-noise case

$$
\begin{align*}
Z[j(t)]=\int & D^{\mathrm{F}}[\bar{y}(t)] \exp \left\{-\frac{\gamma}{2\left(w_{0}\right)^{4}} \int_{0}^{\infty} \mathrm{d} t\left[\left(\frac{\mathrm{~d} \bar{y}}{\mathrm{~d} t}\right)^{2}+2 w_{0}^{2} \bar{y}^{2}+\bar{y}^{4}\right](t)\right\} \\
& \times \exp \left\{\mathrm{i} \int_{0}^{\infty} \mathrm{d} t \bar{y}(t) j(t)\right\} \tag{31}
\end{align*}
$$

Luiz C L Botelho is grateful to CNPq-Brazil for financial support.

Appendix A

In this appendix we discuss some mathematical points related to the final condition on the quantum propagator equations (4)-(6) (its vanishing in the limit $s \rightarrow \infty$). Let us first remark that by imposing the trace class condition on the correlation equation (2) $k\left(t, t^{\prime}\right)\left(\int_{0}^{\infty} k(t, t) \mathrm{d} t<\infty\right)$ one has the result that all realizations (sampling) $g(t)$ of the associated stochastic process are square integrable functions by a direct application of the Minlos theorem on the domain of functional integrals [5]. At this point, we note that if one restricts $g(t)$ further to be a $\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}$-perturbation, namely with $w_{0}^{2} \in L^{\infty}$ and $g(t) \in L^{2}(0, \infty)$

$$
\begin{equation*}
\|\left(w_{0}^{2}(1+g(t)) h\left\|_{L^{2}} \leqslant a\right\| \frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} h\left\|_{L^{2}}+b\right\| h \|_{L^{2}}\right. \tag{A.1}
\end{equation*}
$$

and $0<a<1$ and b arbitrary, one can apply the Kato-Rellich theorem [6] to be sure that the domain of the differential operator $-\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}+w_{0}^{2}+w_{0}^{2} g(t)$ is (at least) contained on the domain of $-\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}$ which in turn has a purely continuous spectrum on $L^{2}(R)$. As a consequence of the above exposed remarks one does not have bound states on the Schrödinger operator spectrum of equation (4) for each realization of $g(t)$ on the above-cited functional class. As a consequence, we have that the evolution operator

$$
\begin{equation*}
\exp \left(\mathrm{i} s\left[-\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}+w_{0}^{2}(1+g(t))\right]\right) \tag{A.2}
\end{equation*}
$$

is a unitary operator on $\operatorname{Dom}\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\right)$ and $\bar{G}\left(s,\left(t, t^{\prime}\right)\right)$ in turn is expected to have the same behaviour of $\exp \left(\right.$ is $\left.\left[-\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\right]\right)$ (asymptotic completeness [7]) at $s \rightarrow \infty$, which in turn vanishes at $s \rightarrow \infty$, making our condition equation (6) highly reasonable from a mathematical physicist's point of view.

At this point we remark that the different problem of determining the quantum propagator of a particle under the influence of a harmonic potential $V(x)=\frac{1}{2} w_{0}^{2} x^{2}$ and a stochastic potential $g(x)$ may be possible to handle in our framework. Note that the 'unperturbed' Hamiltonian $-\frac{\hbar^{2} \mathrm{~d}^{2}}{2 m \mathrm{~d} x^{2}}+\frac{1}{2} m w_{0}^{2} x^{2}$ has a pure point spectrum (bound states) and its perturbation by a $g(x) \in L^{2}(R)$ potential does not alter the spectrum behaviour. However, one can proceed
in a mathematical physicist's (formal) way as exposed in our Letter and see that equation (3) adapted to this case is still (formally) correct. Namely

$$
\begin{align*}
\left\langle G\left(t,\left(x, x^{\prime}\right)\right)\right\rangle_{g} & =\int\left(\prod_{\substack{0<\sigma<t \\
x(0)=x^{\prime} ; x(t)=x}} \mathrm{~d} x(\sigma)\right) \exp \left\{\frac{\mathrm{i}}{2} m \int_{0}^{t} \mathrm{~d} \sigma\left[\left(\frac{\mathrm{~d} x(\sigma)}{\mathrm{d} \sigma}\right)^{2}\right]\right\} \\
& \times \exp \left\{\frac{\mathrm{i}}{2} m w_{0}^{2} \int_{0}^{t} \mathrm{~d} \sigma[x(\sigma)]^{2}\right\} \exp \left\{-w_{0}^{4} \int_{0}^{t} \mathrm{~d} \sigma \int_{0}^{t} \mathrm{~d} \sigma^{\prime} K(x(\sigma) ; x(\sigma))\right\} . \tag{A.3}
\end{align*}
$$

Finally we want to point out that in the general case where $k\left(t, t^{\prime}\right)$ is not defined on an operator of the trace class, the realizations $g(t)$ will be distributional objects. Unfortunately in this case there is no rigorous spectral perturbation mathematics for differential operators acting on nuclear spaces $\left(S^{\prime}(R), D^{\prime}(R)\right)$ etc, which is the natural mathematical setting to understand equation (1) of this Letter.

Appendix B

In this appendix we complete our study by considering the problem of a harmonic oscillator in the presence of a damping term $(0<t<\infty)$

$$
\begin{equation*}
\left\{\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}+v \frac{\mathrm{~d}}{\mathrm{~d} t}+w_{0}^{2}(1+g(t))\right\} x(t)=F(t) \tag{B.1}
\end{equation*}
$$

In order to map the above-written differential equation in the analysis presented in section 1 of this Letter, we implement in equation (B.1) the following time-variable change [3]:

$$
\begin{align*}
& \zeta=\frac{m}{v}\left(1-\mathrm{e}^{-\left(\frac{\nu}{m}\right) t}\right) \tag{B.2}\\
& y(\zeta)=x(t)
\end{align*}
$$

We obtain, thus, the following pure harmonic oscillator differential equation without the damping term in place of the original equation (B.1), namely

$$
\begin{equation*}
\left\{\frac{\mathrm{d}^{2}}{\mathrm{~d} \zeta^{2}}+w_{0}^{2}[1+\tilde{g}(\zeta)]\right\} y(\zeta)=\tilde{F}(\zeta) \tag{B.3}
\end{equation*}
$$

Here

$$
\begin{align*}
& \tilde{g}(\zeta)=g\left(-\left(\frac{m}{v}\right) \lg \left(1-\left(\frac{v}{m}\right) \zeta\right)\right) \tag{B.4}\\
& \tilde{F}(\zeta)=F \frac{\left(-\left(\frac{m}{v}\right) \lg \left(1-\left(\frac{v}{m}\right) \zeta\right)\right)}{\left(1-\left(\frac{v}{m}\right) \zeta\right)^{2}} \tag{B.5}
\end{align*}
$$

and the correlator stochastic frequency

$$
\begin{equation*}
K\left(\zeta, \zeta^{\prime}\right)=K\left(\left(\zeta, \zeta^{\prime}\right)\right)=K\left(\frac{m}{v}\left|\lg \left[\frac{\left(1-\left(\frac{v}{m}\right) \zeta\right)}{\left(1-\left(\frac{v}{m}\right) \zeta^{\prime}\right)}\right]\right|\right) \tag{B.6}
\end{equation*}
$$

From here on the analysis goes as in the bulk of this Letter under the condition that the range associated with this new time variable is the finite interval $\left[0, \frac{m}{v}\right]$.

References

[1] Flatte S M 1979 Sound Transmission Through a Fluctuation Ocean (Cambridge: Cambridge University Press) Van Kampen N G 1981 Stochastic Process in Physics and Chemistry (Amsterdam: North-Holland) Dashen R 1979 J. Math. Phys. 20892
[2] Sheng P (ed) 1990 Scattering and Localization of Classical Waves in Random Media (World Scientific Series on Directions in Condensed Matter Physics vol 8) (Singapore: World Scientific)
Botelho L C L et al 1998 Mod. Phys. Lett. B 12301
Botelho L C L et al 1999 Mod. Phys. Lett. B 13317
Bassalo J M F 1994 Nuovo Cimento B 110
[3] Botelho L C L 1994 Phys. Rev. E 49 R1003
[4] Botelho L C L 1999 Mod. Phys. Lett. B 13363
[5] Simon B 1979 Functional Integration and Quantum Physics (New York: Academic)
[6] Simon B and Reed M 1979 Methods of Modern Mathematical Physics vol 2 (New York: Academic)
[7] Simon B and Reed M 1979 Methods of Modern Mathematical Physics vol 3 (New York: Academic)

